博客
关于我
最短路之Floyd算法
阅读量:544 次
发布时间:2019-03-07

本文共 1298 字,大约阅读时间需要 4 分钟。

最短路之Floyd算法

关于原理Floyd算法是一种用于计算图中最短路径的算法,其核心思想是通过动态规划的方式逐步优化距离矩阵。然而,需要注意的是:Floyd算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如,假设一个图中存在1号顶点到3号顶点的负权回路,比如1→2→3→1→2→3→…,这种情况下,无法找到真正意义上的最短路径。实际上,如果一个图中存在负权环,那么这个图就不存在最短路。

图中如果有负权回路,那么Floyd算法会陷入无法终止的循环,反复寻找“更短的路径”,导致计算结果不稳定。因此,在使用Floyd算法之前,必须确保输入图中不存在负权回路。这一点是Floyd算法的重要前提条件。

Floyd算法的模板以下是一个基于C++语言实现的Floyd算法模板:

代码示例

#include 
#include
#include
#define MAXN 100#define INF 0x3f3f3f3fusing namespace std;int a[MAXN][MAXN];int n, m;void Floyd() { for(int k=1; k<=n; k++) { for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(a[i][j] > a[i][k] + a[k][j]) { a[i][j] = a[i][k] + a[k][j]; } } } }}void init() { for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(i == j) { a[i][j] = 0; } else { a[i][j] = INF; } } }}int main() { cin >> n >> m; for(int i=1; i<=m; i++) { int t1, t2, t3; cin >> t1 >> t2 >> t3; a[t1][t2] = t3; } Floyd(); // 输出结果 // ...}

代码说明

  • 首先包含必要的头文件,包括输入输出流、算法库和队列库。
  • 定义了顶点数为MAXN,初始化为无穷大。
  • Floyd算法的核心三重循环,通过中间点k逐步更新最短路径。
  • 初始化函数,设置顶点到自身的距离为0,其他顶点之间的距离为无穷大。
  • 主函数部分读取输入数据并调用Floyd算法,输出最短路径结果。
  • 转载地址:http://qddcz.baihongyu.com/

    你可能感兴趣的文章
    NTP服务器
    查看>>
    NTP配置
    查看>>
    NUC1077 Humble Numbers【数学计算+打表】
    查看>>
    NuGet Gallery 开源项目快速入门指南
    查看>>
    NuGet(微软.NET开发平台的软件包管理工具)在VisualStudio中的安装的使用
    查看>>
    nuget.org 无法加载源 https://api.nuget.org/v3/index.json 的服务索引
    查看>>
    Nuget~管理自己的包包
    查看>>
    NuGet学习笔记001---了解使用NuGet给net快速获取引用
    查看>>
    nullnullHuge Pages
    查看>>
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>