博客
关于我
最短路之Floyd算法
阅读量:544 次
发布时间:2019-03-07

本文共 1298 字,大约阅读时间需要 4 分钟。

最短路之Floyd算法

关于原理Floyd算法是一种用于计算图中最短路径的算法,其核心思想是通过动态规划的方式逐步优化距离矩阵。然而,需要注意的是:Floyd算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如,假设一个图中存在1号顶点到3号顶点的负权回路,比如1→2→3→1→2→3→…,这种情况下,无法找到真正意义上的最短路径。实际上,如果一个图中存在负权环,那么这个图就不存在最短路。

图中如果有负权回路,那么Floyd算法会陷入无法终止的循环,反复寻找“更短的路径”,导致计算结果不稳定。因此,在使用Floyd算法之前,必须确保输入图中不存在负权回路。这一点是Floyd算法的重要前提条件。

Floyd算法的模板以下是一个基于C++语言实现的Floyd算法模板:

代码示例

#include 
#include
#include
#define MAXN 100#define INF 0x3f3f3f3fusing namespace std;int a[MAXN][MAXN];int n, m;void Floyd() { for(int k=1; k<=n; k++) { for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(a[i][j] > a[i][k] + a[k][j]) { a[i][j] = a[i][k] + a[k][j]; } } } }}void init() { for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(i == j) { a[i][j] = 0; } else { a[i][j] = INF; } } }}int main() { cin >> n >> m; for(int i=1; i<=m; i++) { int t1, t2, t3; cin >> t1 >> t2 >> t3; a[t1][t2] = t3; } Floyd(); // 输出结果 // ...}

代码说明

  • 首先包含必要的头文件,包括输入输出流、算法库和队列库。
  • 定义了顶点数为MAXN,初始化为无穷大。
  • Floyd算法的核心三重循环,通过中间点k逐步更新最短路径。
  • 初始化函数,设置顶点到自身的距离为0,其他顶点之间的距离为无穷大。
  • 主函数部分读取输入数据并调用Floyd算法,输出最短路径结果。
  • 转载地址:http://qddcz.baihongyu.com/

    你可能感兴趣的文章
    npm.taobao.org 淘宝 npm 镜像证书过期?这样解决!
    查看>>
    npm—小记
    查看>>
    npm介绍以及常用命令
    查看>>
    NPM使用前设置和升级
    查看>>
    npm入门,这篇就够了
    查看>>
    npm切换到淘宝源
    查看>>
    npm切换源淘宝源的两种方法
    查看>>
    npm前端包管理工具简介---npm工作笔记001
    查看>>
    npm包管理深度探索:从基础到进阶全面教程!
    查看>>
    npm升级以及使用淘宝npm镜像
    查看>>
    npm发布包--所遇到的问题
    查看>>
    npm发布自己的组件UI包(详细步骤,图文并茂)
    查看>>
    npm和package.json那些不为常人所知的小秘密
    查看>>
    npm和yarn清理缓存命令
    查看>>
    npm和yarn的使用对比
    查看>>
    npm如何清空缓存并重新打包?
    查看>>
    npm学习(十一)之package-lock.json
    查看>>
    npm安装 出现 npm ERR! code ETIMEDOUT npm ERR! syscall connect npm ERR! errno ETIMEDOUT npm ERR! 解决方法
    查看>>
    npm安装crypto-js 如何安装crypto-js, python爬虫安装加解密插件 找不到模块crypto-js python报错解决丢失crypto-js模块
    查看>>
    npm安装教程
    查看>>