博客
关于我
最短路之Floyd算法
阅读量:544 次
发布时间:2019-03-07

本文共 798 字,大约阅读时间需要 2 分钟。

最短路之Floyd算法

关于原理

需要注意的是:Floyd算法不能解决带有“负权回路”(或者叫“负权环”)的图,因为带有“负权回路”的图没有最短路。例如下面这个图就不存在1号顶点到3号顶点的最短路径。因为1->2->3->1->2->3->…->1->2->3这样路径中,每绕一次1->-2>3这样的环,最短路就会减少1,永远找不到最短路。其实如果一个图中带有“负权回路”那么这个图则没有最短路。
在这里插入图片描述
在这里插入图片描述
A->B=4
B->A=2

模板

#include
#include
#include
#define MAXN 100#define INF 0x3f3f3f3fusing namespace std;int a[MAXN][MAXN];int n,m;//n表示顶点个数,m表示边的条数void Floyd() { for(int k=1; k<=n; k++) { for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(a[i][j]>a[i][k]+a[k][j] ) a[i][j]=a[i][k]+a[k][j]; } } }}void init() { for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { if(i==j) a[i][j]=0; else a[i][j]=INF; } }}int main() { cin>>n>>m; for(int i=1; i<=m; i++) { int t1,t2,t3; cin>>t1>>t2>>t3; a[t1][t2]=t3; } Floyd(); cout<

转载地址:http://qddcz.baihongyu.com/

你可能感兴趣的文章
memcached高速缓存学习笔记001---memcached介绍和安装以及基本使用
查看>>
memcached高速缓存学习笔记003---利用JAVA程序操作memcached crud操作
查看>>
Memcached:Node.js 高性能缓存解决方案
查看>>
memcache、redis原理对比
查看>>
memset初始化高维数组为-1/0
查看>>
Metasploit CGI网关接口渗透测试实战
查看>>
Metasploit Web服务器渗透测试实战
查看>>
MFC模态对话框和非模态对话框
查看>>
Moment.js常见用法总结
查看>>
MongoDB出现Error parsing command line: unrecognised option ‘--fork‘ 的解决方法
查看>>
mxGraph改变图形大小重置overlay位置
查看>>
MongoDB可视化客户端管理工具之NoSQLbooster4mongo
查看>>
Mongodb学习总结(1)——常用NoSql数据库比较
查看>>
MongoDB学习笔记(8)--索引及优化索引
查看>>
mongodb定时备份数据库
查看>>
mppt算法详解-ChatGPT4o作答
查看>>
mpvue的使用(一)必要的开发环境
查看>>
MQ 重复消费如何解决?
查看>>
mqtt broker服务端
查看>>
MQTT 保留消息
查看>>